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Partial integration and local mean-field approach for a vector lattice model of microemulsions
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A vector model on the simple cubic lattice, describing a mixture of water, oil, and amphiphile, is considered.
An integration over the amphiphile orientational degrees of freedom is performed exactly in order to obtain an
effective Hamiltonian for the system. The resulting model is a three-state~spin-1! system and contains many-
site interaction terms. The analysis of the ground state reveals the presence of the water–oil-rich phase as well
as the amphiphile-rich and the cubic phases. The temperature phase diagram of the system is analyzed in a
local mean-field approach, and a triple line of water-rich, oil-rich, and microemulsion coexistence is obtained.
For some values of the model parameters, lamellar phases also appear in the system, but only at finite
temperature. The Lifshitz line is determined in a semianalytical way in order to locate the microemulsion
region of the disordered phase.@S1063-651X~97!10007-1#

PACS number~s!: 82.70.Kj, 05.50.1q, 64.60.Cn
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I. INTRODUCTION

Liquid mixtures of water, oil, and amphiphiles~surfac-
tants! have recently been the subject of a very intense inv
tigation@1#. The reason for such an interest is twofold: on t
practical side, the characteristic feature of the amphiphi
that is the presence in the same molecule of a polar h
attracting water and a nonpolar tail attracting oil, makes
possible to reduce the water-oil interface tension by sev
orders of magnitude; on the theoretical side, it is the richn
of their phase diagram which makes these mixtures very
teresting. At low enough temperatures, in addition to
ordered water-rich and oil-rich phases that are found at
surfactant concentration, for a sufficiently high concentrat
of surfactant, the liquid mixture can exhibit structured, lon
range ordered phases like the lamellar, hexagonal, or c
phases. At higher temperatures, a reminiscence of th
structures is found in the so-called microemulsion. The
croemulsion is a region of the disordered phase in wh
particular short-range correlations are present, and can o
even with low surfactant concentration. In this region o
and water-occupied microscopic regions are separated
fluctuating layers of amphiphile. The existence of both str
tured phases and microemulsions is of course due to the
sic feature of amphiphiles described above of being m
ecules with selective ends that tend to be located betwee
and water particles.

To distinguish the microemulsion from an ordinary diso
dered fluid, two criteria have been used in the literatu
based on the Lifshitz line@2# or the disorder line@3,4#, re-
spectively, which must not be confused. The Lifshitz line
identified by searching the maximum of the water-wa
scattering amplitude, which is located at nonzero values
the wave number for a microemulsion but not for an ordin
disordered fluid. The disorder line, on the other hand,
given by the condition that the asymptotic decay of t
water-water correlation function changes its behavior fr
monotonic to nonmonotonic. In any case these are not l
of thermodynamic phase transitions. In this paper the bo
between the microemulsion and the ordinary disordered fl
561063-651X/97/56~1!/770~10!/$10.00
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will be identified by the Lifshitz line which, in our approach
can be easily calculated.

From the theoretical point of view, the phase diagram a
the structure function for the disordered phase have b
intensively investigated. Various phenomenological and
croscopic models, continuous as well as on the lattice, h
been proposed to analyze these systems. Among the la
models there have been several proposals, put forth by
dom @5#, Schick and co-workers@6–8#, Matsen and Sullivan
@9# ~MS in the following! and Ciach, Ho”ye, and Stell@10–
15# ~CHS from now on!. In the model proposed by Widom
three species of molecules occupy the bonds of a lattice;
model can be mapped on an Ising model with extended
teractions in which the1 and2 spins represent water an
oil molecules, and the Peierls surfaces separating domain
a given sign represent amphiphilic layers. It is evident t
such a model cannot represent neither thick amphiphile
ers nor fluctuations in the direction of amphiphilic mo
ecules. In the proposal by Schick and co-workers, a t
three-component mixture is introduced, and a three-body
teraction term was employed to account for the tendency
the amphihilic molecules to aggregate water-amphiphile
triples. As in the Widom model, however, an orientation
degree of freedom for the amphiphile is still missing.

This latter feature was finally introduced by MS and CH
who dealt with models of three-component mixtures
which amphiphilic molecules carry an additional orient
tional degree of freedom~which is manifestly not parity in-
variant!, usually constrained to the lattice directions, a gr
simplification which, however, should not alter the bas
thermodynamical properties.

None of the above models is exactly solvable at fin
temperature in more than one spatial dimension, and he
they have all been thoroughly investigated by the usual
proximate methods of equilibrium statistical mechanics.
particular, the CHS model has been investigated origina
by means of the mean-field approximation@10,12#, but un-
fortunately these studies were based on a ground-state a
sis @11# which turned out to be incorrect for the simple-cub
lattice case. The correct ground state was determined
770 © 1997 The American Physical Society



at
ile

e
e

he
ng
nt

n
o
e
ll

t
c

uc
as
th
n
I
ap
rm
in
,

ry
ind

l-
n
o

-

n
re
at
ve

pe
e
or

to
he

erms

ns
ys-

al

t

ng
are

r
,

he

Eq.
ri-
the

i-
ac-

ns.

56 771PARTIAL INTEGRATION AND LOCAL MEAN-FIELD . . .
@13# and there soon followed a full, correct mean-field tre
ment of the case in which a direct amphiphile-amphiph
orientational interaction is absent@14#. Some work was also
done on the two-dimensional case@16–19# and, recently,
Matsen and Sullivan@19# compared mean-field and Beth
approximations with Monte Carlo simulations on the fac
centered-cubic lattice.

An interesting feature of the CHS model is that, in t
absence of orientational amphiphile-amphiphile coupli
the corresponding degrees of freedom can be exactly i
grated out~summed out, actually!. This integration of the
simple-cubic lattice CHS model, together with a local mea
field analysis of the resulting Hamiltonian, is the purpose
the present paper. Notice that this program has never b
carried out in three dimensions~a short account of a sma
part of this work has been previously published by us@20#!,
but only in two dimensions@15#, where several importan
features of these mixtures are missing due to the redu
dimensionality.

This paper is organized as follows. In Sec. II the constr
tion of the Hamiltonian from a multicomponent lattice-g
model is discussed. In Sec. III the exact integration of
orientational degrees of freedom is explicitly performed a
the resulting effective spin-1 Hamiltonian is presented.
Sec. IV the general equations for the local mean-field
proximation are determined, and the analysis of the unifo
phases is presented. In Sec. V we calculate the Lifshitz l
while the phase diagrams are discussed in Sec. VI and
nally, in Sec. VII, we draw our conclusions.

II. MODEL

The CHS model is a vector lattice model in which eve
site of a cubic lattice is occupied by a particle of some k
~water, oil or amphiphile!. The starting point to build up the
Hamiltonian of the mixture is to consider the following mu
ticomponent lattice-gas model, in which the orientatio
dependent interactions of the amphiphile molecules with
and water~but not among themselves! have been explicitly
included:

H52(
i , j

(
r ,r8

@e i j ~r 82r !Ni~r !Nj~r 8!#2(
i

(
r

m iNi~r !

2(
r
NA~r !(

r8,k
fk@n~r !•~r 82r !#Nk~r 8!, ~2.1!

whereNj (r )50,1 (j5W, O, and A) are the occupation
number operators for water (W), oil (O) and amphiphile
(A), n(r ) is a unit vector representing the amphiphile orie
tation which, for the case of a simple-cubic lattice conside
here, is restricted to a discrete set of orientations such th
points towards one of the six nearest neighbors of a gi
site ~it is of course meaningless if the siter is occupied by
water or oil!, e i j are the coupling energies between the s
cies andfk (k5W andO) the orientational couplings. Th
lattice-gas formalism can be transformed into a spin-1 f
malism by associating, as customary, the eigenvalues11,
21, and 0 of the third component of a spin-1 opera
s(r ) to water, oil, and surfactant, respectively. T
-
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occupation-number operators can then be expressed in t
of the spin-1 operators using Kronecker deltas as

NW5d„s~r !,1…5 1
2 @s2~r !1s~r !#,

NO5d„s~r !,21…5 1
2 @s2~r !2s~r !#, ~2.2!

NA5d„s~r !,0…512s2~r !.

Now, if we consider only nearest-neighbor interactio
and assume~thereby restricting ourselves to balanced s
tems! that water and oil behave symmetrically~antisym-
metrically when interacting with the amphiphile orientation
variables, as it must be!, that is mW5mO , eWW5eOO ,
eOA5eWA , andfO52fW , the Hamiltonian~2.1! can be
easily expressed~apart from an irrelevant additive constan!
in terms of spin variables as

H52
J

2(r ,d s~r !s~r1d!2
K

2(r ,d s2~r !s2~r1d!1D(
r
s2~r !

2A(
r ,d

@12s2~r !#s~r1d!n~r !•d, ~2.3!

where d is a vector of length equal to one lattice spaci
pointing toward nearest neighbors. The new parameters
related to the physical coupling energies by the relations

J5~eWW2eWO!/2, K5~eWW1eWO!/21eAA22eWA ,

D5mA2mW16~eAA2eWA!, A5fW . ~2.4!

The final Hamiltonian Eq.~2.3! is then characterized by fou
parameters. The parameterJ.0 favors oil-water separation
whereas the sign of the surfactant strengthA is not important
@more precisely the model is invariant with respect to t
transformationA→2A, s(r )→2s(r )#, and will be assumed
to be positive. We observe that whenA50 the Hamiltonian
is of the form of the Blume-Emery-Griffiths@21# ~BEG!
model.

III. EFFECTIVE MODEL: INTEGRATION OF THE
SURFACTANT ORIENTATIONS

As already pointed out, in the model represented by
~2.3! the interaction between amphiphile orientational va
ables is absent. It is then possible to integrate out exactly
orientational degrees of freedom represented byn(r ) in order
to obtain an effective Hamiltonian involving only spin var
ables and temperature-dependent coupling energies. To
complish this task, let us rewrite Eq.~2.3! as
H5HBEG1HA , whereHBEG is the Blume-Emery-Griffiths
Hamiltonian recovered forA50, which depends only on the
spin-1 variables, whileHA is the remainder, proportional to
A, which accounts for the orientation-dependent interactio

The partition function can be formally written as

Z5 (
$s~r !,n~r !%

e2H5 (
$s~r !%

e2HBEG (
$n~r !%

e2HA

5 (
$s~r !%

e2~HBEG1H!, ~3.1!
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TABLE I. Values ofz(r ). In the second column we report only one representative permutation, since all
permutations are equivalent.

12s2(r ) „@Dxs(r )#
2,@Dys(r )#

2,@Dzs(r )#
2
… z(r ) Degeneracy Symbol

0 ; 6 1458
1 ~0,0,0! 6 27 z1
1 ~0,0,1! 412 coshA 108 z2
1 ~0,1,1! 214 coshA 144 z3
1 ~1,1,1! 6 coshA 64 z4
1 ~0,0,4! 412 cosh2A 54 z5
1 ~0,1,4! 212 coshA12 cosh2A 144 z6
1 ~1,1,4! 4 coshA12 cosh2A 96 z7
1 ~1,4,4! 2 coshA14 cosh2A 48 z8
1 ~4,4,4! 6 cosh2A 8 z9
1 ~0,4,4! 214 cosh2A 36 z10
pi
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where we have absorbed a factorb5(kBT)
21 into the model

parameters~as a consequence, from now on 1/J will repre-
sent the reduced temperature!, and

H52 ln (
$n~r !%

e2HA ~3.2!

is an effective Hamiltonian which depends only on the s
variables and is calculated in detail below.

As a first step we write, using the fact that the$n(r )% do
not interact with each other,e2H5) rz(r ), where

z~r !5(
n~r !

expHA(
d

@12s2~r !#s~r1d!n~r !•dJ
52 (

a5x,y,z
cosh$A@12s2~r !#Das~r !% ~3.3!

andDas(r )5s(r1da)2s(r2da), with da denoting the unit
lattice vector along directiona. Considering the 3752187
spin configurations of the cluster formed by a site and its
nearest neighbors, one can see thatz(r ) can take on only a
few different values, which are reported in Table I. Looki
at Eq.~3.3! above and at Table I, one realizes that, apart fr
the coefficient 12s2(r ) which can be easily dealt with
z(r ) depends only on@Das(r )#

2, which in turn can take on
the values 0, 1, and 4 only, implying that expandingz(r )
~and hence also its logarithm! in powers of@Das(r )#

2 one
has to retain only terms up to the second order~that is fourth
order in the bare differences!. On the basis of the abov
remarks, we introduce the symbols

Pklm~r !5@Dxs~r !#
2k@Dys~r !#

2l@Dzs~r !#
2m,

k,l ,mP$0,1,2%, ~3.4!

and write
n

x

H~r !52 lnz~r !

52s2~r !ln62@12s2~r !#(
k50

2

(
l50

2

(
m50

2

HklmPklm~r !,

~3.5!

where theHklm’s are ~temperature-dependent, although n
manifestly since temperature has been absorbed into
model parameters! coefficients, invariant under permutatio
of their indices, to be determined. It can be easily chec
that there are as many differentHklm’s as rows in Table I
corresponding to 12s2(r )51, and thus Eq.~3.5! above can
be viewed as a set of ten linear equations in our ten unkno
coefficients. Solving the latter with a symbolic manipulat
like MATHEMATICA one ends up with

Hklm5(
r51

10

hklm;r lnz r , ~3.6!

where thehklm;r ’s are numerical coefficients~again symmet-
ric under permutations ofk, l , andm) reported in Table II
while thez r have already been given in Table I. The effe
tive Hamiltonian can finally be written asH5( rH(r ), and
contains multispin interactions~up to seven spins, that is on
spin and all its nearest neighbors involved in the same c
pling! hidden in thePklm(r ) symbols.

IV. THE LOCAL MEAN-FIELD EQUATIONS

The local mean-field equations can be obtained from
approximate total free energy written as a function of t
local expectations m(r )5^s(r )& and q(r )5^s2(r )&:
F5( r(U(r )2S(r )). We have

F5(
r

HU~r !1FLS q~r !1m~r !

2 D1L@12q~r !#

1LS q~r !2m~r !

2 D G J , ~4.1!

with L(x)5x lnx. The local energy is
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TABLE II. The coefficientshklm;r , invariant under permutations of the indicesk, l andm.

r
klm 1 2 3 4 5 6 7 8 9 10

000 1 0 0 0 0 0 0 0 0 0
001 2

5
4

4
3 0 0 2

1
12 0 0 0 0 0

002 1
4 2

1
3 0 0 1

12 0 0 0 0 0

011 25
16 2

10
3

16
9 0 5

24 2
2
9 0 0 0 1

144

012 2
5
16

3
4 2

4
9 0 2

1
8

5
36 0 0 0 2

1
144

022 1
16 2

1
6

1
9 0 1

24 2
1
18 0 0 0 1

144

111 2
125
64

25
4 2

20
3

64
27 2

25
64

5
6 2

4
9

1
36 2

1
1728 2

5
192

112 25
64 2

65
48

14
9 2

16
27

35
192 2

29
72

2
9 2

1
48

1
1728

11
576

122 2
5
64

7
24 2

13
36

4
27 2

11
192

5
36 2

1
12

1
72 2

1
1728 2

7
576

222 1
64 2

1
16

1
12 2

1
27

1
64 2

1
24

1
36 2

1
144

1
1728

1
192
.
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U~r !52
J

2(d
m~r !m~r1d!2

K

2(d
q~r !q~r1d!1Dq~r !

2@12q~r !#gAMP~r !. ~4.2!

In Eq. ~4.2! the quantitygAMP(r ) can be obtained from Eq
~3.5!, as a linear combination of the function
pklm(r )5^Pklm(r )&, where the latter expectation has to
evaluated in the local mean-field approximation. Notice t
the term inH000 cancels with the isolated term2q(r )ln6 and
reduces to an irrelevant constant. For thepklm’s one finds
easily that

p001~r !5q~r1dz!1q~r2dz!22m~r1dz!m~r2dz!,

p010~r !5q~r1dy!1q~r2dy!22m~r1dy!m~r2dy!,

p100~r !5q~r1dx!1q~r2dx!22m~r1dx!m~r2dx!,

~4.3!

p002~r !5q~r1dz!1q~r2dz!28m~r1dz!m~r2dz!

16q~r1dz!q~r2dz!,

p020~r !5q~r1dy!1q~r2dy!28m~r1dy!m~r2dy!

16q~r1dy!q~r2dy!,

p200~r !5q~r1dx!1q~r2dx!28m~r1dx!m~r2dx!

16q~r1dx!q~r2dx!.

The remaining expressions can be calculated from the
ceeding ones as

pklm~r !5pk00~r !p0l0~r !p00m~r !. ~4.4!

The free energy can be now minimized with respect
m(r ) and q(r ) by following standard procedures. This im
plies to solve the equations resulting from

]F

]j~r !
50, ~4.5!
t

e-

o

wherej(r )5m(r ) or q(r ). From Eq.~4.1!, one easily ob-
tains

]S

]m~r !
52

1

2
ln
q~r !1m~r !

q~r !2m~r !
,

]S

]q~r !
52

1

2
ln

@q~r !1m~r !#@q~r !2m~r !#
4@12q~r !#2

. ~4.6!

After introducing

a2~r !5expF22
]U

]m~r !G ,
b22~r !5expF22

]U

]q~r !G , ~4.7!

and, using Eq.~4.6!, Eq. ~4.5! can be rewritten as the self
consistent equations

m~r !5
a2~r !21

a2~r !1a~r !b~r !11
,

q~r !5
a2~r !11

a2~r !1a~r !b~r !11
. ~4.8!

The evaluation of the partial derivatives of the local ener
is presented in the Appendix.

The general approach is remarkably simplified if we
strict for a moment our attention to the uniform phases. I
then possible to determine analytic equations for the crit
temperature of the water-oil phase and the corresponding
critical point, and also to determine the Lifshitz line. T
describe the transitions from the water-oil phase to the
ordered phase, one can setm(r )5m0 and q(r )5q0, and
study the free-energy density of uniform phases. If use
made of a magnetic language the disordered phase c
sponds to the paramagnetic phase while the water-oil-
phase is ferromagnetic. Thus, a standard~Landau-Ginzburg!
expansion of the free-energy density around the disorde
phase characterized bym050 can be easily performed.
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In the uniform case the quantitiespklm defined in Eqs.
~4.3! and ~4.4! become

p0015p0105p10052~q02m0
2!,

p0025p0205p20052q016q0
228m0

2 ,

p0115p1015p1105p001
2 ,

p0125p1205p2015p2105p1025p0215p001p002,

p0225p2025p2205p002
2 , ~4.9!

p1115p001
3 ,

p1125p1215p2115p001
2 p002,

p1225p2125p2215p002
2 p001,

p2225p002
3 .

Therefore the internal energy density can be written down
extended form as

U5Dq023Jm0
223Kq0

22~12q0!@3H001p00113H011p011

13H002p00216H012p01213H022p0221H111p111#

2~12q0!@3H112p11213H122p1221H222p222#. ~4.10!

In an ordinary mean-field treatment like that in Ref.@14#, the
internal energy density~and hence also the free-energy de
sity! reduces to that of the BEG model. Here this is not
because we have exactly taken into account the fluctuat
of the amphiphilic orientational degrees of freedom.

Upon solving the self-consistent equation]F/]q050 for
q0 ~written as an expansion in powers ofm0) and substitut-
ing back intoF, one can write the free-energy density in t
form of a Ginzburg-Landau expansion asF5F01F2m0

2

1F4m0
41•••. Sinceq0 cannot be determined in closed for

even form050, one has to deal with coefficientsFk which
depend onq0 as well as on the model parameters, withq0
solution of the equation

D26~H0011H002!1a1q01a2q0
21a3q0

31a4q0
41a5q0

5

1a6q0
62 ln~12q0!1 lnS q02 D50, ~4.11!

where the coefficientsai , i51, . . . ,6 aredefined as

a1512H001224H002224H011248H012224H02226K,

a2554H002136H0112144H0122180H022224H111272H112

272H122224H222,

a35288H0122144H022132H1112192H1122480H122

2256H222,

a45540H0221360H1122360H1222720H222, ~4.12!

a551296H122,
in

-
o
ns

a651512H222.

As usual in the Ginzburg-Landau formalism,F2 vanishes
at a critical point, while bothF2 andF4 vanish at a tricritical
point, and these equations will be solved numerically in
temperature vs chemical potential plane to obtain the crit
curves and tricritical points presented in Sec. VI.

The explicit expression of the coefficientF2 is

F2523J1
1

2q0
16~12q0!@H00114H002

14q0~H01115H01214H022!14q0
2~3H012112H022

1H11116H11219H12214H222!

124q0
3~H11215H12214H222!

136q0
4~H12214H222!#, ~4.13!

while F4 is too cumbersome to be written in full form, bu
the equationF450 can be~apart from a factor of definite
sign! written as detT50, whereT is a 232 symmetric ma-
trix of elements

T115
1

3q0
3 248~12q0!@H01118H012116H022

12q0~H11119H112124H122116H222!

16q0
2~H11218H122116H222!#, ~4.14!

T125T2152
1

2q0
2 16@2H00124H00214H011120H012

116H02218q0~2H01122H01218H0221H11116H112

19H12214H222!172q0
2~23H012212H0222H111

121H122120H222!1288q0
3~22H11227H12214H222!

21080q0
4~H12214H222!#, ~4.15!

T22523K1
1

2q0~12q0!
16@H00122H00222H01124H012

22H0221q0~9H00216H011224H012230H02224H111

212H112212H12224H222!14q0
2~18H01229H022

12H111212H112230H122216H222!160q0
3~3H022

12H11222H12224H222!1540H122q0
41756H222q0

5#.

~4.16!

V. STRUCTURE FUNCTION AND THE LIFSHITZ LINE

In the disordered fluid phase, the appearance of the sh
range correlations which characterize a microemulsion
usually recognized by looking at the structure function; th
is, by the momentum space correlation function, or at
real-space correlation function itself. There are two co
monly accepted criteria to define a microemulsion. The fi
one, based on the so-calleddisorder line @3,4#, defines as
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microemulsion that disordered fluid in which the real spa
correlation function has the asymptotic behavior

g~r ![^s~0!s~r !&}e2r /jcos~kr1f!, ~5.1!

with kÞ0 ~as usual,j denotes the correlation length!. This
means that, superimposed on the usual exponential de
we have an oscillatory behavior, which signals that, althou
long-range order is absent, we still have some short-ra
structure in which oil- and water-rich regions, separated b
certain amount of amphiphile, can be identified. The locus
points ~in the temperature vs concentration, or temperat
vs chemical potential plane! at which k vanishes, is called
thedisorder line.

Another criteria for the definition of the microemulsio
refers to the so-calledLifshitz line @2#. In this case the mi-
croemulsion is defined as that disordered fluid in which
water-water structure functionSWW(k) ~to be defined rigor-
ously below! has a peak at a nonzero wave vectorkMAX
Þ0. The locus of points at whichkMAX50 is then called the
Lifshitz line. This definition is more related to the experime
than the previous one,SWW(k) being directly measurable b
neutron scattering, and we shall adopt it from now on, si
in the present approach we have a natural way to determ
the Lifshitz line, which is illustrated below.

The water-water structure function is defined as
momentum-space correlation function; in the multicomp
nent lattice gas, and then in the spin operator formalism
have

SWW~k!5^NW~k!NW~2k!&

5 1
4 ^@s~k!1s2~k!#@s~2k!1s2~2k!#&. ~5.2!

In the mean-field approximation we neglect all correlatio
and hence

SWW~k!5 1
4 ~mkm2k1qkq2k1mkq2k1qkm2k!. ~5.3!

In order to evaluate explicitly the low moment behavi
of the above expression~which in turn is required to locate
the Lifshitz line!, one usually has to introduce the Fouri
expansions ofm andq,

m~r !5m01dm~r !5m01(
k
mke

ik•r ,

q~r !5q01dq~r !5q01(
k
qke

ik•r , ~5.4!

in the free-energy functional, and to diagonalize the q
dratic form which results by an expansion to second orde
fluctuations~that is in the Fourier components ofm andq).
To begin with, we observe that

(
r

dm~r !dm~r1dr !5N(
k
cos~k•dr !mkm2k ,

(
r

dm~r !dq~r1dr !5
1

2
N(

k
cos~k•dr !~qkm2k1mkq2k!.

~5.5!
e

ay,
h
ge
a
f
e

e

t

e
ne

a
-
e

,

-
in

Using the above results we can formally write the lead
terms of the expansion in$mk ,qk%:

F5F01(
k

@akmkm2k1bkqkq2k

1gk~mkq2k1qkm2k!#1•••, ~5.6!

where the coefficientsak , bk , andgk have again been cal
culated with theMATHEMATICA symbolic manipulator. In the
disordered phase (m050) the calculation simplifies consid
erably, and in particulargk50, which means that our qua
dratic form is already diagonal. The expectationsmkm2k and
qkq2k can then be easily obtained by derivation, and o
finally has

SWW~k!5
T

8
~ak

211bk
21!. ~5.7!

Expanding~again withMATHEMATICA ! the above expres
sion up to second order in k, one finds
SWW(k)5S01S2k

21•••, where

S2522Jq0
2116q0

2~12q0!@H00114H002

14q0~H01115H01214H022!14q0
2~3H012112H022

1H11116H11219H12214H222!

124q0
3~H11215H12214H222!136q0

4~H12214H222!#.

~5.8!

The Lifshitz line is then the locus of points at whic
S250.

VI. PHASE DIAGRAM

The present section will be devoted to a detailed desc
tion of the phase diagram that we have obtained in the t
perature~that is, 1/J) vs chemical potential (D/J) and tem-
perature vs surfactant concentration planes, forK/J51 and
several values ofA/J.

The free energy, the iterative equations for our variatio
parameters, and the equations for the Lifshitz line, the c
cal line, and the tricritical point have already been deriv
so the determination of the finite-temperature phase diag
is just a matter of standard numerical work. For fixed valu
of temperature and chemical potential we have to solve
iteration our local mean-field equations on a suitable clus
the precise shape of which depends on the phases expe
then calculate the free energy of the phases correspondin
the local minima of our functional, and finally compare the
in order to find the global minimum and to locate first ord
phase boundaries and multiphase points. All the results
then be translated into the~experimentally relevant! tempera-
ture vs surfactant concentration plane.

On the basis of the ground-state analysis by Ciach
o”ye, and Stell@13# we expect pure water-oil, pure surfactan
and cubic~which was named bicontinuous or ordered bico
tinuous in previous papers by Ciach and co-workers@13,14#
and us @20#! ground states. ForA,(J1K)/2 there is a
boundary between water-oil and surfactant ground state
D53J13K, while for A.(J1K)/2 we have the water/oi
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to cubic boundary atD54J14K22A and the cubic to sur-
factant boundary atD56A. Furthermore, according to th
results by the ordinary~that is, without integration of orien
tational degrees of freedom! mean-field analysis by Ciac
@14# at finite temperature, we eventually expect a few lam
lar phases, with different periodicity.

The cubic ground state is obtained by filling three-four
of the lattice sites by surfactant molecules and the remain
one-fourth by water and oil molecules, which are arrange
a regular, staggered pattern, each species forming a diam
lattice, in such a way that the first and second neighbor
any given water-oil molecule are always surfactants@14#. On
the other hand, lamellar states, denoted byLk in the follow-
ing, are composed of a regular pattern ofk water layers
~orthogonal to one lattice direction!, a surfactant layer,k oil
layers, another surfactant layer, and so on.

Although in principle one could use a huge cubic clus
capable of representing all these phases at the same tim
order to save CPU time it is much more convenient to stu
the pure phases on a single-site cluster, the cubic phase
43 cluster with periodic boundary conditions, and the lam
lar phases onL3131 clusters of suitable lengthL @the
phase denoted byLk requiresL52(k11)#, again with peri-
odic boundary conditions.

The results of our finite temperature analysis forK/J51
andA/J51.5, 3.0, and 5.0 are reported in Figs. 1–3 in t
temperature vs chemical potential plane. The basic struc
of the phase diagram is already clear forA/J51.5 ~Fig. 1!.
The cubic phase is separated from the rich phases~both
water-oil and surfactant phase! by first-order transition lines
while the water-oil to disordered phase boundary is pa
second order and partly first order, exhibiting a tricritic
point. All the first-order transition lines meet at a multipha
point, and the Lifshitz line ends in between this point and
tricritical point, that is on the first order part of the water-o
to disordered boundary, giving rise to a line of water-o
microemulsion coexistence, which is a crucial experimen
feature of these systems@1#. IncreasingA/J ~Figs. 2 and 3!
the most evident modification is that the cubic phase~as well
as its disordered counterpart, the microemulsion! obviously
occupy a larger region of the phase diagram.

FIG. 1. Phase diagram in the temperature (1/J) vs chemical
potential (D/J) plane forK/J51 andA/J51.5. Solid, dashed, and
dotted lines denote first-order transition, second-order transition
Lifshitz lines respectively. The labelso-w, c, m, and d denote
oil-water-rich and cubic phases, microemulsion, and usual di
dered fluid, respectively.
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There is, however, another feature which cannot be
pecteda priori, namely, the appearance of tiny regions o
cupied by the lamellar phasesL2 andL3 ~we did not consider
Lk lamellar phases withk.3) close to the multiphase poin
on the water-oil side. A similar situation occurs for the ca
A/J52.0 considered in Ref.@20#, with the presence of a
small portion of theL2 phase, which was not found ther
since we did not look at lamellar phases of higher periodic
than L1. We also notice that all the new phase boundar
between the lamellar phases and the adjacent ones are
order. The appearance of such phases can be understood
sidering that they are stabilized, even in the ground state
a small interaction between orientational degrees of freed
@13#, and hence the small portions of lamellar phase we
here might be continuously connected to the macrosco
region which emerges from the corresponding stable gro
state~unfortunately, the present approach cannot enter
region, which would be interesting to study in view of th
competition arising between the lamellar and cubic phas!.

This situation has to be contrasted with that occurring
the fcc lattice@19#, where in the ground state, and hence a
in a macroscopic region of the temperature phase diagr
among the structured ordered phases the lamellar phase
found. It has to be noted that these ground-state results
exact, and hence the appearance of different structured
dered phases on different lattices is really a feature of
model, and not of the approximations used.

The phase diagrams in the temperature vs surfactant
centration plane are reported in Figs. 4–6, where all the fi

nd

r-

FIG. 2. The same as Fig. 1 forA/J53.0. The labelsL2 and
L3 denote the corresponding lamellar phases.

FIG. 3. The same as Fig. 2 forA/J55.0.



n
ta
nd

o

ho

n
tz
a
n
o
Ci
rs
nt

C
ar
th
bl
e

out
ew
e
tion
ical
a-
n in
ple
t of
er-
rst

he
ing
rs.
tri-
d

nt of

ti-
ge
m-
s
ed
r-

to
e, in
an-
ee
te-
of
lat-

ed
d on

al

ce

r t

56 777PARTIAL INTEGRATION AND LOCAL MEAN-FIELD . . .
order transition lines have now been replaced by coexiste
regions. As it can be expected, increasing the surfac
strengthA/J, the region occupied by the microemulsion a
the cubic phase enlarges, and forA/J55.0 we find the mi-
croemulsion at surfactant concentrations as low as 0.2.

The present results, which can be expected to be m
accurate than those previously reported by Ciach@14# be-
cause of the exact integration we have performed here, s
that, even forA/J53.0 and 5.0~corresponding toc/b51.5
and 2.5, respectively in Ciach’s paper! there is no critical end
point. On the contrary, the rich water-oil to disordered tra
sition exhibits in all cases a tricritical point, and the Lifshi
line ends on the first order part of the transition line inste
of ending in the critical end point as found by Ciach. Co
sequently, even in these cases we have a triple line of
water-microemulsion coexistence, which is not found by
ach, and the cubic to microemulsion transition is always fi
order in our approach, while Ciach found a tricritical poi
separating a second order part and a first order part.

VII. CONCLUSIONS

We have studied a vector lattice model proposed by
ach, Ho”ye, and Stell for microemulsions by means of a p
tial exact integration and a local mean-field approach, on
simple cubic lattice. The partial integration was possi
since the surfactant orientational degrees of freedom w

FIG. 4. Phase diagram in the temperature vs surfactant con
tration plane forK/J51 andA/J51.5. Solid lines delimit coexist-
ence regions, and dashed and dotted lines denote second-orde
sition and Lifshitz lines, respectively. The symbola-b denotes
coexistence of phasesa andb.

FIG. 5. The same as Fig. 4 forA/J53.0.
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assumed not to interact with each other, and was carried
in the three-dimensional case, where it leads to many n
multispin ~up to seven spins for the simple cubic lattic!
interactions, among which one has the three-body interac
introduced by Schick and co-workers on a phenomenolog
basis@6–8#. The exact integration of the amphiphile orient
tional degrees of freedom affects the phase diagram eve
the region occupied by uniform phases: while in the sim
mean-field approximation the orientation-dependent par
the Hamiltonian makes a vanishing contribution to the int
nal energy of uniform phases, this is no more true if one fi
performs this exact integration.

In order to characterize the microemulsion region of t
disordered phase the Lifshitz line has been calculated, giv
a closed-form analytic equation in the model paramete
Similar equations have been derived for the critical and
critical transitions from the pure water-oil to disordere
phase.

The present results can be regarded as an improveme
those previously reported by Ciach@14# in an ordinary mean-
field approximation. The main modification is that the cri
cal end-point structure found by Ciach for sufficiently lar
amphiphilic interaction is replaced here by the more co
mon tricritical point structure, with the Lifshitz line alway
ending on the first order part of the water-oil to disorder
transition line, giving rise to a triple line along which wate
and oil-rich phases coexist with the microemulsion.

It would be interesting to apply the present approach
the same model defined on the face-centered-cubic lattic
order to compare the results with those from simple me
field approximation and Monte Carlo simulations, and s
what kind of improvements are brought in by the exact in
gration of amphiphile orientations. Finally, since the kind
structured phases that one finds depends strongly on the
tice, it should also be worth looking for structured order
phases in the ground state of the present model define
other lattices. Work is in progress along these lines.

APPENDIX

Let us now evaluate the partial derivatives of the loc
energy, appearing in Eq.~4.7!. From Eq.~4.2! one obtains

n-

ran-

FIG. 6. The same as Fig. 4 forA/J55.0.
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]U

]m~r !
5$2J@m~r1dx!1m~r2dx!1m~r1dy!1m~r2dy!

1m~r1dz!1m~r2dz!#2Dm~r !%,

]U

]q~r !
5$D2K@q~r1dx!1q~r2dx!1q~r1dy!1q~r2dy!

1q~r1dz!1q~r2dz!1gAMP~r !#2Dq~r !%, ~A1!

wheregAMP(r ) was defined in Eq.~4.2! and

Dj~r !5 (
ur82r u51

@12q~r 8!#
]gAMP~r 8!

]j~r !
, j5m,q

~A2!

~the summation is restricted to nearest neighbors of siter ).
Furthermore, from Eqs.~3.5!, ~4.2!, and~4.3!, we have

]gAMP~r 8!

]j~r !
5 (

k51,2

]p00k~r 8!

]j~r !
R00k1 (

k51,2

]p0k0~r 8!

]j~r !
R0k0

1 (
k51,2

]pk00~r 8!

]j~r !
Rk00, ~A3!

where

R0015H0011H011~p0101p100!1H012~p2001p020!

1H112~p100p0201p200p010!1H122p200p020

1H111p100p010, ~A4!

R0025H0021H012~p0101p100!1H022~p0201p200!

1H112p100p0101H122~p100p0201p200p010!

1H222p200p020,

R0105H0011H011~p0011p100!1H012~p2001p002!

1H112~p100p0021p200p001!1H122p200p002

1H111p100p001,

R0205H0021H012~p0011p100!1H022~p2001p002!

1H112p100p0011H122~p100p0021p200p001!

1H222p200p002,
l

v

R1005H0011H011~p0101p001!1H012~p0201p002!

1H112~p010p0021p020p001!1H122p020p002

1H111p010p001,

R2005H0021H012~p0101p001!1H022~p0201p002!

1H112p010p0011H122~p020p0021p020p001!

1H222p020p002.

It remains to calculate, directly from Eq.~4.3!, the deriva-
tives

]p00k~r 8!

]m~r !
522k2@d r ,r81dz

m~r 82dz!1d r ,r82dz
m~r 81dz!#,

]p0k0~r 8!

]m~r !
522k2@d r ,r81dy

m~r 82dy!1d r ,r82dy
m~r 81dy!#,

~A5!

]pk00~r 8!

]m~r !
522k2@d r ,r81dx

m~r 82dx!1d r ,r82dx
m~r 81dx!#

and

]p00k~r 8!

]q~r !
5d r ,r81dz

@116dk,2q~r 82dz!#

1d r ,r82dz
@116dk,2q~r 81dz!#,

]p0k0~r 8!

]q~r !
5d r ,r81dy

@116dk,2q~r 82dy!#

1d r ,r82dy
@116dk,2q~r 81dy!#, ~A6!

]pk00~r 8!

]q~r !
5d r ,r81dx

@116dk,2q~r 82dx!#

1d r ,r82dx
@116dk,2q~r 81dx!#.
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